predict class labels for new observations
predict.lhsc.RdPredict the binary class labels or the fitted values of an lhsc object.
Arguments
- object
A fitted
lhscobject.- kern
The kernel function used when fitting the
lhscobject.- x
The predictor matrix, i.e., the
xmatrix used when fitting thelhscobject.- newx
A matrix of new values for
xat which predictions are to be made. We note thatnewxmust be a matrix,predictfunction does not accept a vector or other formats ofnewx.- type
"class"or"link"?"class"produces the predicted binary class labels and"link"returns the fitted values. Default is"class".- ...
Not used. Other arguments to
predict.
Details
If "type" is "class", the function returns the predicted class labels. If "type" is "link", the result is \(\beta_0 + x_i'\beta\) for the linear case and \(\beta_0 + K_i'\alpha\) for the kernel case.
Value
Returns either the predicted class labels or the fitted values, depending on the choice of type.
Author
Oh-Ran Kwon and Hui Zou
Maintainer: Oh-Ran Kwon kwon0085@umn.edu
Examples
data(BUPA)
BUPA$X = scale(BUPA$X, center=TRUE, scale=TRUE)
lambda = 10^(seq(-3, 3, length.out=10))
kern = rbfdot(sigma=sigest(BUPA$X))
m1 = lhsc(BUPA$X, BUPA$y, kern,
lambda=lambda, eps=1e-5, maxit=1e5)
predict(m1, kern, BUPA$X, tail(BUPA$X))
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
#> [1,] 1 1 1 1 1 1 1 1 1 1
#> [2,] 1 1 1 1 1 1 1 1 1 -1
#> [3,] 1 1 1 1 1 1 1 1 1 1
#> [4,] 1 1 1 1 1 1 1 1 1 -1
#> [5,] 1 1 1 1 1 1 1 1 1 -1
#> [6,] 1 1 1 1 1 1 1 1 1 -1